Rattler OCI Registry
Repository Path Format Reference
Conda Channels
1. Simple Format
channel/package1/package2/...
Basic format with channel and package names.
Example: Single package from conda-forge
docker pull /conda-forge/boltons
Copy
Pulls the boltons package from conda-forge channel.
Example: Multiple packages
docker pull /conda-forge/boltons/numpy
Copy
Pulls both boltons and numpy packages.
2. With pkgs Separator
channel/subchannel/pkgs/package1/package2/...
Format with subchannels and explicit pkgs separator.
Example: Subchannel with packages
docker pull /conda-forge/robostack/pkgs/boltons/numpy
Copy
Pulls packages from the conda-forge/robostack subchannel.
3. With Platform
channel/subchannel/platform/pkgs/package1/package2/...
Format with explicit platform specification.
Example: Linux 64-bit platform
docker pull /conda-forge/linux-64/pkgs/boltons
Copy
Pulls boltons for Linux 64-bit platform.
Example: OSX ARM64 platform
docker pull /conda-forge/osx-arm64/pkgs/numpy
Copy
Pulls numpy for macOS ARM64 (Apple Silicon).
GitHub Repositories
4. GitHub Format
github/owner/repo[/platform][/dev]
Format for fetching packages from a GitHub repository's pixi.lock file.
Example: Basic GitHub repository
docker pull /github/prefix-dev/pixi
Copy
Fetches packages from pixi.lock in the main branch (production mode).
Example: GitHub with dev mode
docker pull /github/prefix-dev/pixi/dev
Copy
Fetches from main branch in development mode.
Example: GitHub with platform
docker pull /github/prefix-dev/pixi/linux-64
Copy
Fetches with Linux 64-bit platform specification.
Example: GitHub with platform and dev mode
docker pull /github/prefix-dev/pixi/linux-64/dev
Copy
Fetches with platform and development mode enabled.
Note: GitHub format always fetches the pixi.lock file from the main (or master) branch
of the repository and uses the "default" environment.
Complete Example: Running Python with NumPy
Here's a complete example showing how to run Python with NumPy in an interactive container.
Run Python with NumPy in interactive mode
docker run -it /conda-forge/python/numpy python
Copy
This command pulls Python and NumPy from conda-forge and starts the Python REPL directly.
Inside the Python REPL, import and use NumPy
>>> import numpy as np
>>> print(np.array([1, 2, 3]))
[1 2 3]
Copy
NumPy is ready to use! You can now perform array operations and numerical computations.
Tip: You can add any conda packages to the path. For example, use /conda-forge/python/numpy/pandas/scipy to get multiple data science packages in one container.